How does a Decision Tree work in machine learning?
A Decision Tree is a supervised machine learning algorithm used for both classification and regression tasks. It works by splitting the data into subsets based on feature values, aiming to create a tree-like model of decisions. Learning about Decision Trees is often a key part of AI training courses, as it is one of the most powerful yet interpretable algorithms.
The tree starts with a root node that splits the data based on the most significant feature.
The data is then recursively split at each node, where the best feature is chosen at each step to minimize the impurity of the splits.
In classification, impurity measures like Gini Impurity or Entropy (Information Gain) are used to select the feature for the split.
In regression, the mean squared error (MSE) is used to determine the best splits.
Example: A decision tree can be used to predict whether a customer will buy a product based on features such as age, income, and location. Learning how to implement Decision Trees is a valuable skill covered in AI training courses, enabling students to build practical predictive models.
-
What AI Training Will Help You Land the Most In-Demand Jobs?
1 week ago
-
How can mastering AI skills transform your career? Share your experiences!
1 week ago
-
AI vs Machine Learning: Which Path is Best for Your Career?
1 week ago
-
How long does it take to get certified in Artificial Intelligence?
2 weeks ago
-
What certifications actually help land an entry-level AI job today?
2 weeks ago
Latest Post: Hey everyone! I’ve been looking into the AI course Certification at H2K Infosys USA and wanted to hear from someone who’s actually been through it. Our newest member: micckdavis Recent Posts Unread Posts Tags
Forum Icons: Forum contains no unread posts Forum contains unread posts
Topic Icons: Not Replied Replied Active Hot Sticky Unapproved Solved Private Closed