How do you handle missing or inconsistent data in a dataset?
Handling missing or inconsistent data is a crucial part of any analysis. First, I identify the type and extent of missing or inconsistent entries. Depending on the situation, I may remove rows, fill missing values with mean/median/mode, or use forward/backward fill techniques. For inconsistent data (e.g., typos, different formats), I use data cleaning functions in Python or Excel to standardize entries. During my Data Analytics course online, I learned to apply these techniques using tools like Pandas, NumPy, and Power Query. A solid understanding of data preprocessing ensures accurate, meaningful insights and is a key skill for any aspiring analyst.
-
What are the big data analytics security issues organizations face today?
3 weeks ago
-
What are the data analytics required skills for entry-level professionals?
3 weeks ago
-
How does data analytics help business growth and decision-making?
3 weeks ago
-
How to build a data analyst portfolio with real-world projects?
4 weeks ago
-
What SQL case study questions are asked in senior data analyst interviews?
4 weeks ago
Latest Post: What skills differentiate a high-performing Scrum Master from an average one? Our newest member: mathew@1234 Recent Posts Unread Posts Tags
Forum Icons: Forum contains no unread posts Forum contains unread posts
Topic Icons: Not Replied Replied Active Hot Sticky Unapproved Solved Private Closed